Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment

نویسندگان

  • Liang Zhang
  • Xiaojuan Lin
  • Jinting Wang
  • Feng Jiang
  • Li Wei
  • Guanghao Chen
  • Xiaodi Hao
چکیده

Biological sulfate-reducing bacteria (SRB) may be effective in removing toxic lead and mercury ions (Pb(II) and Hg(II)) from wet flue gas desulfurization (FGD) wastewater through anaerobic sulfite reduction. To confirm this hypothesis, a sulfite-reducing up-flow anaerobic sludge blanket reactor was set up to treat FGD wastewater at metal loading rates of 9.2 g/m(3)-d Pb(II) and 2.6 g/m(3)-d Hg(II) for 50 days. The reactor removed 72.5 ± 7% of sulfite and greater than 99.5% of both Hg(II) and Pb(II). Most of the removed lead and mercury were deposited in the sludge as HgS and PbS. The contribution of cell adsorption and organic binding to Pb(II) and Hg(II) removal was 20.0 ± 0.1% and 1.8 ± 1.0%, respectively. The different bioavailable concentration levels of lead and mercury resulted in different levels of lethal toxicity. Cell viability analysis revealed that Hg(II) was less toxic than Pb(II) to the sludge microorganisms. In the batch tests, increasing the Hg(II) feeding concentration increased sulfite reduction rates. In conclusion, a sulfite-reducing reactor can efficiently remove sulfite, Pb(II) and Hg(II) from FGD wastewater.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biodesulfurization of Flue Gases Using Synthesis Gas Delivered as Microbubbles

Introduction Anaerobic treatment processes for biodegradation of hazardous materials have increasingly been gaining attention in environmental applications. Microbial processes utilizing sulfate reducing bacteria (SRB), in particular, have found potential applications in variety of treatment processes such as flue gas desulfurization [1,2], gypsum reclamation [3], sulfur recovery from sulfitdsu...

متن کامل

Field Demonstration of the Activated Iron Technology for Removing Heavy Metals from Flue-Gas-Desulfurization Wastewater

The Activated Iron Process (AIP) technology, which is renamed from the hybrid zero-valent-iron (hZVI) process, is a novel chemical treatment process that has shown great potential in previous laboratory and field bench-scale tests for removing selenium, mercury, and nutrients from the flue-gas-desulfurization wastewater. In this study, a pilot-scale demonstration was conducted to continuously t...

متن کامل

Investigation on Mercury Reemission from Limestone-Gypsum Wet Flue Gas Desulfurization Slurry

Secondary atmospheric pollutions may result from wet flue gas desulfurization (WFGD) systems caused by the reduction of Hg(2+) to Hg(0) and lead to a damping of the cobenefit mercury removal efficiency by WFGD systems. The experiment on Hg(0) reemission from limestone-gypsum WFGD slurry was carried out by changing the operating conditions such as the pH, temperature, Cl(-) concentrations, and o...

متن کامل

Effects of Modified Pyrolysis Tar on Gas Desulphurization Performance

The paper introducedeffects of modified pyrolysis tar on flue gas desulfurization. This experiment selected the pyrolysis tar as the raw material, researched the effects on desulfurization performance under different modification solution, concentration, solid liquid ratio of pyrolysis tar and modified solution, calcination temperature and calcination time by 16 group orth...

متن کامل

Investigating the effect of BIODROF systems based on algae-bacterial biofilm for removing COD and TOC from domestic wastewater

Along with the development of urbanization over the past century, water consumption in urban areas rose sharply. Produce large amounts of waste in cities around the world on the one hand, and restricted access to freshwater resources, on the other, increase the requirement to regard for recycling of domestic wastewater. Especially in the Middle East region, that has an arid and semiarid climate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016